Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Curr Opin Neurol ; 36(4): 360-364, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382103

RESUMO

PURPOSE OF REVIEW: Significant progress in characterizing presymptomatic amyotrophic lateral sclerosis (ALS) is ushering in an era of potential disease prevention. Although these advances have largely been based on cohorts of deep-phenotyped mutation carriers at an elevated risk for ALS, there are increasing opportunities to apply principles and insights gleaned, to the broader population at risk for ALS [and frontotemporal dementia (FTD)]. RECENT FINDINGS: The discovery that blood neurofilament light chain (NfL) level increases presymptomatically and may serve as a susceptibility biomarker, predicting timing of phenoconversion in some mutation carriers, has empowered the first-ever prevention trial in SOD1 -ALS. Moreover, there is emerging evidence that presymptomatic disease is not uniformly clinically silent, with mild motor impairment (MMI), mild cognitive impairment (MCI), and/or mild behavioral impairment (MBI) representing a prodromal stage of disease. Structural and functional brain abnormalities, as well as systemic markers of metabolic dysfunction, have emerged as potentially even earlier markers of presymptomatic disease. Ongoing longitudinal studies will determine the extent to which these reflect an endophenotype of genetic risk. SUMMARY: The discovery of presymptomatic biomarkers and the delineation of prodromal states is yielding unprecedented opportunities for earlier diagnosis, treatment, and perhaps even prevention of genetic and apparently sporadic forms of disease.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/diagnóstico , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/prevenção & controle , Demência Frontotemporal/genética , Estudos Longitudinais , Biomarcadores , Doenças Assintomáticas
4.
Brain ; 145(1): 27-44, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34677606

RESUMO

Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Esclerose Amiotrófica Lateral/diagnóstico , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/prevenção & controle , Doenças Assintomáticas , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/prevenção & controle
5.
Neurochem Res ; 46(11): 2867-2884, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34075522

RESUMO

Methylmercury (MeHg) is a potent neurotoxin that causes neurotoxicity and neuronal cell death. MeHg exposure also leads to oligodendrocyte destruction, glial cell overactivation, and demyelination of motor neurons in the motor cortex and spinal cord. As a result, MeHg plays an important role in the progression of amyotrophic lateral sclerosis (ALS)-like neurocomplications. ALS is a fatal neurodegenerative disorder in which neuroinflammation is the leading cause of further CNS demyelination. Nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway was thought to be a potential target for neuroprotection in ALS. Acetyl-11-keto-beta-boswellic acid (AKBA) is a multi-component pentacyclic triterpenoid mixture derived from Boswellia serrata with anti-inflammatory and antioxidant properties. The research aimed to investigate whether AKBA, as a Nrf2 / HO-1 activator, can provide protection against ALS. Thus, we explored the role of AKBA on the Nrf2/HO-1 signaling pathway in a MeHg-induced experimental ALS model. In this study, ALS was induced in Wistar rats by oral gavage of MeHg 5 mg/kg for 21 days. An open field test, force swim test, and grip strength were performed to observe experimental rats' motor coordination behaviors. In contrast, a morris water maze was performed for learning and memory. Administration of AKBA 50 mg/kg and AKBA 100 mg/kg continued from day 22 to 42. Neurochemical parameters were evaluated in the rat's brain homogenate. In the meantime, post-treatment with AKBA significantly improved behavioral, neurochemical, and gross pathological characteristics in the brain of rats by increasing the amount of Nrf2/HO-1 in brain tissue. Collectively, our findings indicated that AKBA could potentially avoid demyelination and encourage remyelination.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Compostos de Metilmercúrio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção/efeitos dos fármacos , Triterpenos/uso terapêutico , Esclerose Amiotrófica Lateral/induzido quimicamente , Esclerose Amiotrófica Lateral/prevenção & controle , Animais , Feminino , Masculino , Neuroproteção/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Triterpenos/farmacologia
6.
Acta Neuropathol Commun ; 9(1): 21, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541434

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that affects motoneurons. Mutations in superoxide dismutase 1 (SOD1) have been described as a causative genetic factor for ALS. Mice overexpressing ALS-linked mutant SOD1 develop ALS symptoms accompanied by histopathological alterations and protein aggregation. The protein disulfide isomerase family member ERp57 is one of the main up-regulated proteins in tissue of ALS patients and mutant SOD1 mice, whereas point mutations in ERp57 were described as possible risk factors to develop the disease. ERp57 catalyzes disulfide bond formation and isomerization in the endoplasmic reticulum (ER), constituting a central component of protein quality control mechanisms. However, the actual contribution of ERp57 to ALS pathogenesis remained to be defined. Here, we studied the consequences of overexpressing ERp57 in experimental ALS using mutant SOD1 mice. Double transgenic SOD1G93A/ERp57WT animals presented delayed deterioration of electrophysiological activity and maintained muscle innervation compared to single transgenic SOD1G93A littermates at early-symptomatic stage, along with improved motor performance without affecting survival. The overexpression of ERp57 reduced mutant SOD1 aggregation, but only at disease end-stage, dissociating its role as an anti-aggregation factor from the protection of neuromuscular junctions. Instead, proteomic analysis revealed that the neuroprotective effects of ERp57 overexpression correlated with increased levels of synaptic and actin cytoskeleton proteins in the spinal cord. Taken together, our results suggest that ERp57 operates as a disease modifier at early stages by maintaining motoneuron connectivity.


Assuntos
Esclerose Amiotrófica Lateral/enzimologia , Esclerose Amiotrófica Lateral/prevenção & controle , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Animais , Modelos Animais de Doenças , Eletromiografia , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Denervação Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Proteômica , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
RNA Biol ; 18(11): 1546-1554, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427561

RESUMO

Pathological changes involving TDP-43 protein ('TDP-43 proteinopathy') are typical for several neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). FTLD-TDP cases are characterized by increased binding of TDP-43 to an abundant lncRNA, NEAT1, in the cortex. However it is unclear whether enhanced TDP-43-NEAT1 interaction represents a protective mechanism. We show that accumulation of human TDP-43 leads to upregulation of the constitutive NEAT1 isoform, NEAT1_1, in cultured cells and in the brains of transgenic mice. Further, we demonstrate that overexpression of NEAT1_1 ameliorates TDP-43 toxicity in Drosophila and yeast models of TDP-43 proteinopathy. Thus, NEAT1_1 upregulation may be protective in TDP-43 proteinopathies affecting the brain. Approaches to boost NEAT1_1 expression in the CNS may prove useful in the treatment of these conditions.


Assuntos
Esclerose Amiotrófica Lateral/prevenção & controle , Encéfalo/metabolismo , Proteínas de Ligação a DNA/toxicidade , Demência Frontotemporal/prevenção & controle , Neuroblastoma/prevenção & controle , RNA Longo não Codificante/genética , Proteinopatias TDP-43/prevenção & controle , Esclerose Amiotrófica Lateral/etiologia , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila melanogaster , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Longo não Codificante/administração & dosagem , Saccharomyces cerevisiae , Proteinopatias TDP-43/etiologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
8.
Pharmacol Res ; 165: 105457, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515706

RESUMO

Microglia-mediated neuroinflammatory response and neuron damage are considered as a self-propelling progressive cycle, being strongly implicated in the progression of neurodegeneration in amyotrophic lateral sclerosis (ALS). Diphenyl diselenide (DPDS), a simple organoselenium compound, has been known to possess multiple pharmacological properties. The purpose of this study was to explore the neuroprotective effects of DPDS against microglia-mediated neuroinflammatory injury in ALS models. We found that DPDS pretreatment inhibited LPS-induced activation of IκB/NF-κB pathway and subsequent release of proinflammatory factors from activated primary hSOD1G93A microglia. Moreover, DPDS suppressed NLRP3 inflammasome activation by decreasing protein nitration via reduction in NO and ROS levels, whose low levels are related to NF-κB inhibition responsible for iNOS and NOX2 down-regulations, respectively. Notably, DPDS-mediated ROS attenuation was not linked to Nrf2 activation in this cellular model. Furthermore, in the absence of activated microglia, DPDS has no significant effect on the individual hSOD1G93A-NSC34 cells; however, in in vitro neuron-microglia conditional culture and co-culture experiments, DPDS protected motor neurons from neurotoxic damage caused by LPS or BzATP-stimulated microglia activation. Above observations suggest that DPDS-afforded neuroprotection is linked to inhibition of microglia-mediated neuroinflammation in ALS, which was further verified in vivo as shown by improvements of motor deficits, prolonged survival, and reduction of motor neuron loss and reactive microgliosis in hSOD1G93A transgenic mouse. Altogether, our results show that DPDS elicited neuroprotection in ALS models through inactivation of microglia by inhibiting IκB/NF-κB pathway and NLRP3 inflammasome activation, suggesting that DPDS may be a promising candidate for potential therapy for ALS.


Assuntos
Esclerose Amiotrófica Lateral/prevenção & controle , Derivados de Benzeno/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Compostos Organosselênicos/uso terapêutico , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Animais , Derivados de Benzeno/farmacologia , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/metabolismo , Fármacos Neuroprotetores/farmacologia , Compostos Organosselênicos/farmacologia , Superóxido Dismutase-1/genética
9.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998479

RESUMO

With aging, the nervous system gradually undergoes degeneration. Increased oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and cell death are considered to be common pathophysiological mechanisms of various neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), organophosphate-induced delayed neuropathy (OPIDN), and amyotrophic lateral sclerosis (ALS). Autophagy is a cellular basic metabolic process that degrades the aggregated or misfolded proteins and abnormal organelles in cells. The abnormal regulation of neuronal autophagy is accompanied by the accumulation and deposition of irregular proteins, leading to changes in neuron homeostasis and neurodegeneration. Autophagy exhibits both a protective mechanism and a damage pathway related to programmed cell death. Because of its "double-edged sword", autophagy plays an important role in neurological damage and NDDs including AD, PD, HD, OPIDN, and ALS. Melatonin is a neuroendocrine hormone mainly synthesized in the pineal gland and exhibits a wide range of biological functions, such as sleep control, regulating circadian rhythm, immune enhancement, metabolism regulation, antioxidant, anti-aging, and anti-tumor effects. It can prevent cell death, reduce inflammation, block calcium channels, etc. In this review, we briefly discuss the neuroprotective role of melatonin against various NDDs via regulating autophagy, which could be a new field for future translational research and clinical studies to discover preventive or therapeutic agents for many NDDs.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/prevenção & controle , Esclerose Amiotrófica Lateral/prevenção & controle , Doença de Huntington/prevenção & controle , Melatonina/farmacologia , Doença de Parkinson/prevenção & controle , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Relacionadas à Autofagia/agonistas , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Ritmo Circadiano/fisiologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Melatonina/biossíntese , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Glândula Pineal/fisiologia
10.
Sci Rep ; 10(1): 14759, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901053

RESUMO

To test the hypothesis that aspirin, non-aspirin nonsteroidal anti-infammatory drugs (NA-NSAIDs), or acetaminophen can reduce the risk of ALS, we conducted a systematic review and meta-analysis of related previous studies. A comprehensive search was conducted on the PubMed, Embase, Cochrane Library and SCOPUS databases. It included studies published up to 29 February 2020 that fulfilled our inclusion criteria. Aspirin, acetaminophen and NA-NSAIDs use information, between the ALS and control groups, was collected for the meta-analysis. Rates of aspirin, NA-NSAID, and acetaminophen use in ALS group, compared with control group were investigated. In the results, only three studies that relate the risk of ALS to aspirin, NA-NSAIDs and acetaminophen use satisfied the inclusion criteria for the meta-analysis. Regarding aspirin, the studies did not show any statistically significant difference in aspirin use between the ALS and control groups (Odds ratio, 1.04 [95% confidence interval, 0.90-1.21]). NA-NSAIDs and acetaminophen use, however, did show up statistically significant differences in between the ALS and control groups. (Odds ratio, 0.82 [95% confidence interval, 0.73-0.91]) and (Odds ratio, 0.80 [95% confidence interval, 0.69-0.93]). However, our study has some limitations. Firstly, we only included a small number of studies. Secondly, the included studies did not control for past medical history, which may have confounded their results, and in turn, could have caused bias in our study. Thirdly, in this meta-analysis, the ALS patients were not subdivided into sporadic or familial type. Lastly, the studies also did not consider the types of NSAIDs and dosages used of each drug. For more convincing evidence regarding the effectiveness of aspirin, NA-NSAIDs and acetaminophen to reduce the risk of ALS occurrence, more qualified prospective studies are required. In conclusion, the use of NA-NSAIDs and acetaminophen is associated with a decreased risk for the development of ALS. In contrast, aspirin did not have any effect on the reduction of the risk of ALS occurrence.


Assuntos
Acetaminofen/uso terapêutico , Esclerose Amiotrófica Lateral/prevenção & controle , Analgésicos não Narcóticos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Quimioterapia Combinada , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-31684770

RESUMO

Background: Few well-established factors are associated with risk of amyotrophic lateral sclerosis (ALS). We comprehensively evaluate prescription drugs use in administrative health claims from U.S. Medicare beneficiaries in relation to ALS risk to generate hypotheses for further research. Methods: This is a population-based case-control study of 10,450 U.S. Medicare participants (ages 66-89 years) diagnosed with ALS, based on Medicare Parts A and B fee-for-service claims, between 1 January 2008, and 31 December 2014, and 104,500 controls (1:10 ratio) frequency-matched on age, sex, and selection year. Odds ratios (ORs) for the ALS association with 685 prescription drugs were estimated using logistic regression models for both a one- and three-year lag period. Covariates included demographic characteristics and key comorbidities, among other factors. Prescription drug use was based on Medicare Part D claims. We adjusted for multiple comparisons using a Bonferroni correction. Additional a priori analyses of sex hormone drugs were also undertaken. Results: In the large drug screen, we found 10 drugs significantly associated with lower ALS risk after the multiple-testing correction in a one-year and three-year lag analysis. These included several drugs for hypertension, diabetes, and cardiovascular disease. In a separate a priori inquiry of sex hormone drugs, tamoxifen was related to lower ALS risk, and testosterone to a higher risk in women. Conclusions: These associations warrant replication in databases that include information on the severity and duration of medical conditions underlying drug use, and drug use over a longer portion of individuals' lifespans, to further help evaluate confounding by indication.


Assuntos
Esclerose Amiotrófica Lateral/epidemiologia , Esclerose Amiotrófica Lateral/prevenção & controle , Medicare/tendências , Medicamentos sob Prescrição/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Esclerose Amiotrófica Lateral/diagnóstico , Antibacterianos/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Estudos de Casos e Controles , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Medicare Part D/tendências , Estados Unidos/epidemiologia
13.
Neurobiol Dis ; 136: 104702, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837419

RESUMO

Mutations in Cu/Zn superoxide dismutase (SOD1) cause ~20% of familial ALS (FALS), which comprises 10% of total ALS cases. In mutant SOD1- (mtSOD1-) induced ALS, misfolded aggregates of SOD1 lead to activation of the unfolded protein response/integrated stress response (UPR/ISR). Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a kinase that phosphorylates eukaryotic translation initiator factor 2α (p-eIF2α), coordinates the response by causing a global suppression of protein synthesis. Growth arrest and DNA damage 34 (GADD34) dephosphorylates p-eIF2α, allowing protein synthesis to return to normal. If the UPR/ISR is overwhelmed by the amount of misfolded protein, CCAAT/enhancer-binding homologous protein (CHOP) is activated leading to apoptosis. In the current study we investigated the effect of knocking down CHOP and GADD34 on disease of G93A and G85R mtSOD1 mice. Although a CHOP antisense oligonucleotide had no effect on survival, an intravenous injection of GADD34 shRNA encoded in adeno-associated virus 9 (AAV9) into neonatal G93A as well as neonatal G85R mtSOD1 mice led to a significantly increased survival. G85R mtSOD1 mice had a reduction in SOD1 aggregates/load, astrocytosis, and microgliosis. In contrast, there was no change in disease phenotype when GADD34 shRNA was delivered to older G93A mtSOD1 mice. Our current study shows that GADD34 shRNA is effective in ameliorating disease when administered to neonatal mtSOD1 mice. Targeting the UPR/ISR may be beneficial in mtSOD1-induced ALS as well as other neurodegenerative diseases in which misfolded proteins and ER stress have been implicated.


Assuntos
Esclerose Amiotrófica Lateral/genética , Técnicas de Silenciamento de Genes/métodos , Proteína Fosfatase 1/deficiência , Proteína Fosfatase 1/genética , Superóxido Dismutase-1/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/prevenção & controle , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Superóxido Dismutase-1/metabolismo
14.
Hum Mol Genet ; 28(21): 3584-3599, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642482

RESUMO

A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Esclerose Amiotrófica Lateral/prevenção & controle , Animais , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Denervação Muscular , Músculos/inervação , Mutação de Sentido Incorreto , Junção Neuromuscular/metabolismo , Transporte Proteico
15.
J Neuroimmune Pharmacol ; 14(4): 688-696, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31321663

RESUMO

Oxidant toxicity has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), an insidiously progressive neurodegenerative disorder involving upper and lower motor neurons. Here, we investigated the cellular and molecular mechanisms underlying the neuroprotective effects of an anti-oxidant genistein in SOD1-G93A transgenic mouse model of ALS. Rotarod test, hanging wire test and hindlimb clasping test were used to determined disease onset and assess motor performance. Immunostaining together with neuronal size measurement were used to count viable motor neurons. In addition, immunostaining procedure and ELISA kit were used to assess the inflammatory response in the spinal cord. Our results showed that Genistein administration suppressed the production of pro-inflammatory cytokines and alleviated gliosis in the spinal cord of SOD1-G93A mice. In addition, genistein administration induced autophagic processes and enhanced the viability of spinal motor neurons. As a result, genistein alleviated ALS-related symptoms and slightly prolonged the lifespan of SOD1-G93A mice. Taken together, our results indicate that genistein is neuroprotective in SOD1-G93A mice, suggesting genistein could be a promising treatment for human ALS. Graphical Abstract Genistein protects impariments in SOD1-G93A transgenic mouse model.


Assuntos
Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/prevenção & controle , Modelos Animais de Doenças , Genisteína/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Superóxido Dismutase/genética , Esclerose Amiotrófica Lateral/tratamento farmacológico , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fitoestrógenos/uso terapêutico
18.
Neurochem Res ; 44(4): 897-904, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30656593

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease caused by the loss of upper and lower motor neurons resulting in muscle weakness and paralysis. Recently, VGF, a neuropeptide that is a precursor of bioactive polypeptides, was found to be decreased in ALS patients, and its inducer exerted protective effects in models of ALS. These findings suggested that VGF was involved in the pathology of ALS. Here, we investigated the neuroprotective effects of various VGF-derived peptides in an in vitro ALS model. We applied seven VGF-derived peptides (TLQP-21, AQEE-30, AQEE-11, LQEQ-19, QEEL-16, LENY-13, and HVLL-7) to the motor neuron-derived cell line, NSC-34, expressing SOD1G93A, which is one of the mutated proteins responsible for familial ALS. Nuclear staining revealed that AQEE-30 and LQEQ-19, which are derived from the C-terminal polypeptide of the VGF precursor protein, attenuated neuronal cell death. Furthermore, immunoblot analysis demonstrated that LQEQ-19 promoted the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2, and inhibiting these mitogen-activated MAP kinases (MAPKs) with phosphoinositide 3-kinase or MEK/ERK inhibitors, eliminated the neuroprotective effects of LQEQ-19. In conclusion, these results suggest that VGF C-terminal peptides exert their neuroprotective effects via activation of MAPKs such as Akt and ERK1/2. Furthermore, these findings indicate that VGF-derived peptides have potential application in ALS therapy.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Neuropeptídeos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Esclerose Amiotrófica Lateral/prevenção & controle , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fatores de Crescimento Neural , Neuropeptídeos/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Resultado do Tratamento
19.
F1000Res ; 7: 111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026923

RESUMO

Stakeholders in healthcare are increasingly turning to real world evidence (RWE) to inform their decisions, alongside evidence from randomized controlled trials. RWE is generated by analysing data gathered from routine clinical practice, and can be used across the product lifecycle, providing insights into areas including disease epidemiology, treatment effectiveness and safety, and health economic value and impact. Recently, the US Food and Drug Administration and the European Medicines Agency have stated their ambition for greater use of RWE to support applications for new indications, and are now consulting with their stakeholders to formalize standards and expected methods for generating RWE. Pharmaceutical companies are responding to the increasing demands for RWE by developing standards and processes for each stage of the evidence generation pathway. Some conventions are already in place for assuring quality, whereas other processes are specific to the research question and data sources available. As evidence generation increasingly becomes a core role of medical affairs divisions in large pharmaceutical companies, standards of rigour will continue to evolve and improve. Senior pharmaceutical leaders can drive this change by making RWE a core element of their corporate strategy, providing top-level direction on how their respective companies should approach RWE for maximum quality. Here, we describe the current and future areas of RWE application within the pharmaceutical industry, necessary access to data to generate RWE, and the challenges in communicating RWE. Supporting and building on viewpoints from industry and publicly funded research, our perspective is that at each stage of RWE generation, quality will be critical to the impact that RWE has on healthcare decision-makers; not only where RWE is an established and evolving tool, but also in new areas that have the potential to disrupt and to improve drug development pathways.


Assuntos
Esclerose Amiotrófica Lateral/prevenção & controle , Tomada de Decisões , Atenção à Saúde/organização & administração , Indústria Farmacêutica/normas , Medicina Baseada em Evidências/organização & administração , Setor de Assistência à Saúde/normas , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Bases de Dados Factuais , Humanos , Resultado do Tratamento
20.
Nat Cell Biol ; 20(8): 917-927, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30050118

RESUMO

Fibro-adipogenic progenitors (FAPs) are typically activated in response to muscle injury, and establish functional interactions with inflammatory and muscle stem cells (MuSCs) to promote muscle repair. We found that denervation causes progressive accumulation of FAPs, without concomitant infiltration of macrophages and MuSC-mediated regeneration. Denervation-activated FAPs exhibited persistent STAT3 activation and secreted elevated levels of IL-6, which promoted muscle atrophy and fibrosis. FAPs with aberrant activation of STAT3-IL-6 signalling were also found in mouse models of spinal cord injury, spinal muscular atrophy, amyotrophic lateral sclerosis (ALS) and in muscles of ALS patients. Inactivation of STAT3-IL-6 signalling in FAPs effectively countered muscle atrophy and fibrosis in mouse models of acute denervation and ALS (SODG93A mice). Activation of pathogenic FAPs following loss of integrity of neuromuscular junctions further illustrates the functional versatility of FAPs in response to homeostatic perturbations and suggests their potential contribution to the pathogenesis of neuromuscular diseases.


Assuntos
Adipogenia , Esclerose Amiotrófica Lateral/metabolismo , Denervação/métodos , Interleucina-6/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Músculo Quadríceps/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo , Adipogenia/efeitos dos fármacos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Esclerose Amiotrófica Lateral/prevenção & controle , Animais , Cardiotoxinas , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Fibrose , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/prevenção & controle , Mutação , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/patologia , Fármacos Neuromusculares/farmacologia , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/inervação , Músculo Quadríceps/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Nervo Isquiático/cirurgia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/prevenção & controle , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...